Telegram Group & Telegram Channel
mlx-kan — это реализация сетей Колмогорова–Арнольда (Kolmogorov–Arnold Networks, KAN), оптимизированная для процессоров Apple Silicon с использованием фреймворка MLX.

Он представляет собой Python-пакет, который использует высокую вычислительную мощность чипов Apple M1 и более поздних версий, обеспечивая эффективное и масштабируемое решение для разработки, обучения и оценки моделей KAN.

Интересные аспекты проекта:
- Инновационная архитектура: KAN предлагает альтернативу многослойным перцептронам (MLP), заменяя фиксированные функции активации на узлах обучаемыми функциями на связях. Это позволяет достичь большей точности и интерпретируемости моделей.
GITHUB.COM

- Оптимизация для Apple Silicon: Проект использует вычислительные возможности процессоров Apple Silicon, что обеспечивает высокую производительность и эффективность при выполнении задач машинного обучения.

- Открытый исходный код: Доступность кода на GitHub позволяет сообществу исследователей и разработчиков изучать, улучшать и адаптировать проект под свои нужды, способствуя развитию технологий машинного обучения.

Таким образом, mlx-kan представляет собой значимый вклад в область машинного обучения, предлагая новые подходы к архитектуре нейронных сетей и эффективно используя современные аппаратные возможности.

@machinelearning_interview



tg-me.com/machinelearning_interview/1642
Create:
Last Update:

mlx-kan — это реализация сетей Колмогорова–Арнольда (Kolmogorov–Arnold Networks, KAN), оптимизированная для процессоров Apple Silicon с использованием фреймворка MLX.

Он представляет собой Python-пакет, который использует высокую вычислительную мощность чипов Apple M1 и более поздних версий, обеспечивая эффективное и масштабируемое решение для разработки, обучения и оценки моделей KAN.

Интересные аспекты проекта:
- Инновационная архитектура: KAN предлагает альтернативу многослойным перцептронам (MLP), заменяя фиксированные функции активации на узлах обучаемыми функциями на связях. Это позволяет достичь большей точности и интерпретируемости моделей.
GITHUB.COM

- Оптимизация для Apple Silicon: Проект использует вычислительные возможности процессоров Apple Silicon, что обеспечивает высокую производительность и эффективность при выполнении задач машинного обучения.

- Открытый исходный код: Доступность кода на GitHub позволяет сообществу исследователей и разработчиков изучать, улучшать и адаптировать проект под свои нужды, способствуя развитию технологий машинного обучения.

Таким образом, mlx-kan представляет собой значимый вклад в область машинного обучения, предлагая новые подходы к архитектуре нейронных сетей и эффективно используя современные аппаратные возможности.

@machinelearning_interview

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1642

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Machine learning Interview from ms


Telegram Machine learning Interview
FROM USA